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ABSTRACT 
Classical soil mechanics treats a soil sample subjected to laboratory testing as 

a homogeneous soil element and uses the homogenized strains in constitutive 
modeling. This method does not appropriately consider the fact that strain 
localization (i.e. shear banding) is almost an inevitable phenomenon in soils.  After 
shear banding takes place, the continued deformation of the sample localizes in one 
or few shear bands, whereas the remaining portions experience essentially rigid body 
motions along the shear bands.  In this situation, the mechanical interpretation of 
homogenized (i.e. average) measurements of soil element behaviors becomes 
ambiguous, and the effort of constitutive modeling should focus on local 
measurements within the shear bands whenever applicable. The present paper 
describes a number of innovative local quantification techniques that we have 
recently developed or tailored on a numerical platform in order to facilitate
characterizing soil behaviors within shear bands. With these new techniques, we
compare average mechanical and fabric measurements homogenized over the entire 
sample, to those retrieved from the shear bands only in the context of numerical 
simulation with the discrete element method (DEM).

INTRODUCTION
Classical soil mechanics has traditionally treated a soil sample subjected to 

laboratory testing (triaxial, plain strain compression, simple shear, true-triaxial, 
hollow cylinder, etc.) as a soil element and uses the homogenized strains in 
constitutive modeling. Although deformation localization, especial shear banding is 
often observed, it is usually not explicitly considered at the specimen level in most 
constitutive theories. However, it has been discovered in experimental studies 
utilizing advanced imaging technologies that strain localization is almost a universal 
phenomenon for both loose and dense sand specimens under drained as well as 
undrained test conditions (Finno et al. 1996, 1997). X-ray computed tomography
(CT) analysis (Desrues et al. 1996) has revealed that some seemingly uniform 
deformation patterns are in fact the results of complex shear localization (or shear 
banding) patterns inside soil specimens. After shear banding takes place, the 
continued deformation of the sample concentrates in one or a few shear bands, 
whereas the remaining portions experience essentially rigid body motions along the 
shear bands. In this situation, the mechanical interpretation of homogenized (i.e. 
average) measurements of soil element behaviors becomes ambiguous, and the effort 



of constitutive modeling should focus on measurements local to the shear bands. 
Despite the significant advance in laboratory measurement technologies (e.g. Desrues 
and Viggiani, 2004; Rechenmacher, 2006; Hall et al., 2010; Hasan and Alshibli, 
2010), local quantification of shear band characteristics remains an expensive and 
technically challenging task that is not available to most laboratories. Note that shear 
failure planes in the field can be seen as a form of shear bands. This situation is 
typically handled explicitly in numerical models by allowing state variables for the 
failed elements to evolve differently from those for the remainder of the geo-
structure. This paper focuses on the interpretation of laboratory test results and its 
implications for constitutive modeling.

Particle-based numerical methods, especially the discrete element method 
(DEM, also termed the distinct element method) provide an appealing supplement to 
laboratory experiment. DEM simulation yields a complete time history of information 
about velocity and location of all the particles constituting the assembly being 
simulated as well as their mutual relationships (i.e. contacts and contact forces). This 
makes the comparison of material characteristics quantified locally and globally a 
reasonably achievable task. Unfortunately, most studies in the literature employing
DEM simulation have followed the tradition of global measurements as in laboratory 
studies. This is partly due to the lack of analysis methods designed for local 
quantities, so the analysis of DEM simulation results largely continues to use analysis 
methods analogous to laboratory measurements.

In this paper, we present some of the advances that we have made in using 
DEM to investigate granular material properties, especially those local to shear 
bands. We first present the analysis methods developed and tailored for this purpose. 
Then we compare the local and global analysis results to gain insights into the 
implications of local measurements for the study of soil mechanics. As mentioned 
before, we see DEM numerical simulation as a promising supplement (not a 
replacement) for traditional laboratory methods. Although DEM is not capable of 
capture all the features of real soil samples, the insights that we gained in the 
numerical platform could inspire and guide the study of real materials.

LOCAL MEASUREMENT TECHNIQUES
Identification of Shear Bands and Masking

Shear bands in laboratory experiments are usually identified in a subjective 
way through the discontinuous deformation patterns. DEM simulation provides 
abundant information about the movement of individual particles, allowing more 
objective methods of shear localization identification. Shown in Figure 1 are the 
DEM simulation results of a biaxial compressive test under constant lateral confining 
stress at an axial strain of 15%. Figure 1(a) shows the deformed grid “painted” onto 
the specimen in its undeformed state; in Figure 1(b) the color of each particle denotes 
the amount of rotation since the initial state; the line segments in Figure 1(c) 
represent the maximum shear strain rate, with the lengths denoting magnitudes and 
the orientations denoting the maximum shear direction. These three methods 
unanimously show a shear band extending diagonally in the specimen. Once a shear 
band is identified, we can attach a polygon-shaped “mask” covering the center 



portion of the shear band. Each vertex of this mask is attached to a particle so that the 
mask can deform with the sample as shown in Figure 1(a). Most mechanical 
characteristics of a granular particle assembly modeled with DEM, including stress, 
strain and strain rates, void ratio, fabric tensor, etc. are obtained through statistical 
analysis of particle-level quantities. By only including quantities pertaining to 
particles or inter-particle contacts within the mask, we can obtain quantitative 
characteristics of the shear band.

   
                   (a)                                          (b)                                          (c)
Figure 1 Various methods for identifying shear bands. Details of the simulations have been 
reported in Fu and Dafalias (2011a, b) and are not repeated here. A mask covers the center 
portion of the shear band and deforms with the specimen in shown in (a).

Quantifying Local Deformation
We have also developed a method for quantifying large and localized 

deformation in granular assemblies. Existing methods typically discretize the 
equivalent continuum of granular assembly into a mesh and use formulations 
analogous to the strain calculation methods in the finite element method (FEM) to 
quantify the deformation of this granular assembly. The new method presented here 
is based on the velocity gradient tensor instead of small engineering strains. We rely 
on “reference triangles” to estimate the velocity gradient of arbitrary domains 
composed of multiple particles in the assembly. A reference triangle for a small 
domain in a granular assembly is shown in Figure 2. Its three vertices are attached to 
three particles with coordinates x1, x2, and x3 and velocity v1, v2, and v3.  The four 
components of the velocity gradient tensor L (vi,j) are
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According to definitions in continuum mechanics, the rate-of-deformation 
tensor D and the spin tensor W are the symmetric and skew-symmetric parts of tensor 
L, respectively. Multiple reference triangles can be defined for the same domain and 
since they are independent of each other, they can geometrically overlap. The sizes of 



the reference triangles can be selected according to the resolution requirement of the 
analysis. Because only the locations and velocities of the current time step is used and 
a “reference configuration” is not required to define the velocity gradient, the 
reference triangles at different times steps do not necessarily attach to the same 
particles. For the purpose of quantifying deformation (rates) in a shear band, the 
reference triangles should be smaller than the width of the shear band. Numerous 
overlapping reference triangles can be created to cover the entire specimen, but 
statistical analysis can be conducted only on the ones within the shear band mask.
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Figure 2 A reference triangle for a small domain in a 
granular assembly.

The aforementioned tensors (L, D, and W) only provides information about 
the “rate” of deformation at any given moment. In order to track the overall shear 
deformation of a shear band, we can perform a time integration of the shear 
component of D along the shear band direction. The integral is termed the 
accumulative local shear strain in the following numerical examples.

Quantifying Local Void Ratio
  The void ratio of an identified shear band can be calculated based on the 

total area (the 2D equivalent of volume) of the masked shear band and the volume of 
the solid phase inside. However, this is a nontrivial task because many particles are 
arbitrarily “split” by the edges of the mask into two halves, one inside the mask and 
the other outside. To avoid the complexity caused by the calculation of the areas of 
these two arbitrary halves, we rasterize the DEM model into a high-resolution bitmap 
image. Each particle is typically represented by thousands to tens of thousand pixels 
in the bitmap, depending on the particle size. The void ratio in the masked shear band
is calculated by dividing the number of pixels representing voids by the number of 
pixels representing solid particles in the mask. Checking whether a given pixel is 
inside the polygon-shaped mask is a trivial task.

Figure 3 Rasterizing the DEM model into a 
bitmap for calculating the void ratio in the 
mask. Solid particles in the mask are 
represented by black pixels and voids 
represented by white pixels. Note that this 
arbitrary mask is for illustrative purposes, 
and it does not necessarily cover a shear band 
in this specific image.



NUMERICAL EXAMPLE I: SIZE-EFFECT ON VOLUMETRIC STRAIN
In soil mechanics, the volumetric strain εv of a particle assembly (or a soil 

sample) is calculated as 
0

0
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where V0 is the total volume of the undeformed specimen (the reference 
configuration) and V(t) is the specimen volume at time t. The average void ratio can 
be calculated based on the volumetric strain as 

0( ) (1 ) ( 1 ) 1ve t e     (3)
If we explicitly take the effects of shear banding into account, we can assume that: 1) 
in the undeformed homogeneous state, the volume ratio of the portion that would
evolve into shear bands to the entire specimen is α; 2) the average void ratio of the 
shear band(s) is es(t), and 3) the void ratio of the remainder of the specimen is er(t). 
The average void ratio over the specimen is then

)()1()()( tetete rs   (4)
and es(t) and er(t) are dependent on the stress state at time t as well as some intrinsic
properties of the particle assembly itself.  Therefore, the average void ratio calculated 
based on the overall deformation of the specimen is actually dependent on a 
geometrical parameter α. It has been observed in the literature that the width of a 
shear band is typically 8 to 20 times the mean particle size (Muhlhaus and 
Vardoulakis, 1987; Finno et al., 1997; Alshibli and Sture, 1999), so the value of α is 
likely to decrease as the specimen size increases. Due to this mechanism, the 
volumetric strain, as well as the corresponding void ratio at a given stress state and 
total deformation level is dependent on the sizes of the specimen.

This size effect was not paid attention to in soil mechanics probably because 
each laboratory usually employs soil samples of the same size. While it is uncommon 
to test otherwise identical soil samples with different sizes in a real laboratories, 
DEM provides a convenient means for demonstrating this phenomenon. In the 
following example, a biaxial compression specimen (denoted as specimen A) with a 
height-to-width ratio of approximately 2.2 is fabricated with the pluviation method 
described in Fu and Dafalias (2011a). This specimen consists of 18,000 pentagonal 
particles of various sizes.  Two more specimens (B and C) are trimmed out of 
specimen A, and they consist of 9,000 and 4,500 particles, respectively but the 
height-to-width ratios remains 2.2. All three specimens are subjected to isotropic 
consolidation at a confining pressure of 100 kPa and the initial average void ratio is 
0.173. Subsequently, they are axially compressed at the same strain rate while the 
confining pressure (σ3) remains at 100 kPa. The deformation patterns of the three 
specimens are shown in Figure 4. Two shear bands forming an “X”-shaped pattern 
have developed in each specimen. This is in part because the upper and lower platens 
compressing the specimens are not allowed to move laterally, forcing such an “X”-
shaped pattern to form.

If we were to investigate the global behavior of these three specimens, the 
evolution of the stress ratio σ1/σ3 and the volumetric strain is show in Figure 5. 
Typical behaviors of dense sand can be observed. The stress ratio for all the three 



specimens first reaches a peak value before declining to a constant value (the so-
called steady or critical state) with minor fluctuation. The three specimens share the 
same peak stress ratio and the same critical stress ratio, as expected. In terms of the 
volume change, significant dilation is observed after a brief volume decrease, typical 
of dense sands. All three specimens eventually reach constant volumetric strains, but 
the steady-state volumetric strain increases as the size of the specimen decreases.  
This can be explained by equation (4) as the average void ratio as well as the 
corresponding average volumetric strain increases as α, the relative volume of the 
shear band compared to the volume of the specimen increases. Since the width of the 
shear band is closely related to the particle sizes, it does not change proportionally as 
the specimen is composed of less or more particles. We can also observe that the 
three axial strain-volumetric strain curves only “split” from each other at an axial 
strain of approximately 4%, when shear banding starts to dictate deformation of these 
specimens.  Before that they exactly overlap each other.

Figure 4 Shear banding 
patterns of the three 
specimens with the same 
initial state but different 
sizes: They consist of 
18,000, 9,000, and 4,500 
particles from left to right.
At the same overall axial 
deformation, shear bands in 
a smaller specimen occupy a 
larger portion of the total 
volume.
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Figure 5 Global responses of the three biaxial compression specimens.

This dependency of the critical (or steady) state void ratio on the specimen 
sizes is troublesome in constitutive modeling. Material characteristics in the critical 
state are supposed to be inherent material properties, and parameters related to 
specimen dimensions are highly undesirable in constitutive models. A solution is to 
focus the measurement in the shear bands, where deformation is actually taking place, 
instead of the specimen as the whole. Figure 6 shows the evolution of void ratios of 



the three specimens in the shear bands with respect to the local accumulative shear 
strain. They all converge to the same local void ratio of 0.30. The random fluctuation 
of the local void ratio is more severe than that of the global measurement, because the 
shear bands only comprise a relatively small number of particles. Since real 
specimens are usually made up of millions to billions of particles, this volatility 
should not be a serious issue for real specimens.
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Figure 6 The evolution of void 
ratio inside shear bands with 
respect to the local 
accumulative shear strain of 
the shear bands.

EXAMPLE II: BIAXIAL COMPRESSION WITH DIFFERENT INITIAL 
PARTICLE ORIENTATION

Strength and deformation characteristics of sands with inherent fabric 
anisotropy caused by preferred alignment of elongated particles perpendicular to the 
direction of deposition have been extensively studied both experimentally (e.g. Oda 
et al., 1978; Tatsuoka et al., 1986; Guo, 2008) and numerically (e.g. Mahmood and 
Iwashita, 2009; Li and Li, 2009; Fu and Dafalias, 2011a and 2011b). Figure 7 shows 
selected results from a numerical investigation using DEM (Fu and Dafalias, 2011a). 
The discrete model used in the study, the fabrication of the numerical specimens, and 
the simulation parameters were reported in Fu and Dafalias (2011a, 2011b) and Fu et 
al. (2011). The results shown here are the evolution of the principal stress ratio and 
volumetric strain of biaxial compression tests with different initial predominant 
particle orientations (characterized by the bedding plane tilting angle δ) but otherwise 
the same initial fabric (void ratio, intensity of fabric anisotropy, etc.). These 
numerical results quantitatively resemble the plane strain compressive test results on 
natural sands reported by Oda et al. (1978) and Tatsuoka et al. (1986). According to 
these global average measurements, the steady-state volumetric strain (and critical 
void ratio) seems to depend on the initial particle orientations with respect to the 
loading directions. The specimens with its bedding plane perpendicular or 
approximately perpendicular to the major principal stress (δ=0º, 15º) have the greatest 
dilation rates and ultimate volumetric strains. This observation has influenced 
subsequent modeling efforts (e.g. Dafalias et al., 2004), which formulated the steady-
state void ratio as a function of the initial fabric. 

However, if we focus the measurement on the shear band only, as shown in 
Figure 8, we can observe that local void ratio in all specimens tends to approach the 
same ultimate value of approximately 0.30. Note that the seven curves terminate at 
different local shear strains (from 120% for δ=60º to 370% for δ=0º), but the ends 
correspond to the same global axial strain of 24%.  As shown in Figures 9, the 



relationship between the global axial strain and the local shear strain in shear bands is 
complicated. Some specimens, such as that with δ=0º develop thin shear bands at an 
early stage of deformation. The shear bands in some other specimens such as those 
with δ=60º or δ=90º are rather dispersed. At the same axial strain, the shear band 
deformation rate for the former is higher than that for the later, allowing various 
amounts of accumulative deformation to develop in the shear bands. For the latter 
specimens, the total shear deformation in shear bands does not seem to be sufficient 
to allow the ultimate void ratio to be reached when the loading has terminated. 
Although the ultimate fabric characteristics at very large deformation seem to be 
independent of the initial fabrics, the fabric evolution processes do dependent on the 
initial fabrics.
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            (a) δ=0º                     (a) δ=30º                  (a) δ=60º                 (a) δ=90º
Figure 9 Deformation pattern of selected specimens in the end of loading (global axial strain 
of 24%). The polygon-shaped semi-transparent areas are the masks used for local 
measurement. They only cover the center portion of the shear bands, not necessarily the full 
width.



CONCLUDING REMARKS
The present paper discusses the implications of global (covering the entire 

laboratory test or numerical specimens) vs. local (focusing on the shear bands only) 
measurements for constitutive modeling of soils. The former has been the mainstream 
methodology, largely owing to the fact that quantification of soil characteristics local 
to shear bands is inevitably difficult in a laboratory environment. Particle-based 
numerical methods, such as the discrete element method (DEM) provide a promising 
research platform where local measurement can be conducted in a relatively easy 
manner. However, due to the long tradition of global quantification, methods and 
numerical tools for local measurement are far from being widely available. We have 
been trying to revisit some important problems in soil mechanics with innovative 
local measurement techniques on a DEM-based numerical platform. This paper 
presents some of the methods and numerical tools that we have developed, and also 
illustrates the importance of local measurements by comparing the conclusions that 
would be drawn from traditional global measurements and the observations made 
with the relatively new local quantifications. It was found that focusing the 
deformation in shear bands reveals some “simple and clear” soil behaviors, which are 
desirable in constitutive modeling. The preliminary observations suggest that certain 
behaviors such as the dependency of the steady-state (or critical-state) void ratio on 
specimen sizes or initial predominant particles orientations can be artifacts introduced 
by averaging soil characteristics across the entire specimens. Nevertheless, to build 
new constitutive models based on local measurements is a challenging task. Rather 
than presenting a mature solution, the present paper only aims at introducing our 
preliminary effort that can potentially be useful to ongoing studies in this area.
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